Takedaite $Ca_3B_2O_6$

(c)2001-2005 Mineral Data Publishing, version 1

Crystal Data: Hexagonal. Point Group: $\overline{3}$ 2/m. As granular crystals, to 0.8 mm.

Physical Properties: Hardness = 4.5 VHN = 429-503, 478 average (25 g load). D(meas.) = 3.10(2) D(calc.) = 3.12

Optical Properties: Semitransparent. Color: White to pale gray; colorless in thin section.

Luster: Vitreous.

Optical Class: Uniaxial (-). $\omega = 1.726$ $\epsilon = 1.630$

Cell Data: Space Group: $R\overline{3}c$. a = 8.638(1) c = 11.850(2) Z = 6

X-ray Powder Pattern: Fuka, Japan.

2.915 (100), 1.895 (75), 2.756 (61), 2.493 (44), 2.044 (21), 2.160 (19), 1.976 (18)

Chemistry:

$$\begin{array}{cccc} & (1) & (2) \\ B_2O_3 & 28.41 & 29.27 \\ CaO & 71.13 & 70.73 \\ \underline{LOI} & 0.14 & & \\ \hline Total & 99.68 & 100.00 \\ \end{array}$$

(1) Fuka, Japan; corresponds to $Ca_{3.05}B_{1.96}O_6$. (2) $Ca_3B_2O_6$.

Occurrence: A rare mineral probably formed by boron-rich fluids reacting between crystalline limestone and gehlenite-spurrite skarns.

Association: Frolovite, nifontovite, olshanskyite, pentahydroborite, sibirskite, calcite.

Distribution: From Fuka, near Bicchu, Okayama Prefecture, Japan.

Name: Honors Professor Hiroshi Takeda (1934–), mineralogist, University of Tokyo, Tokyo, Japan.

Type Material: National Science Museum, Tokyo, Japan; National Museum of Natural History, Washington, D.C., USA, 165482.

References: (1) Kusachi, I., C. Henmi, and S. Kobayashi (1995) Takedaite, a new mineral from Fuka, Okayama Prefecture, Japan. Mineral. Mag., 59, 549–552. (2) (1996) Amer. Mineral., 81, 518 (abs. ref. 1).