(c)2001-2005 Mineral Data Publishing, version 1

Crystal Data: Monoclinic. Point Group: 2/m. Microscopic plates, grouped in parallel; commonly as fine-grained granular masses.

Physical Properties: Hardness = n.d. D(meas.) = 1.765(4) D(calc.) = 1.76 Slowly soluble in H_2O .

Optical Properties: Semitransparent. Color: White; colorless in transmitted light. Optical Class: Biaxial (+). Orientation: $Z \wedge \text{elongation} \simeq 7^{\circ}-13^{\circ}$; Y = b. Dispersion: r < v, slight. $\alpha = 1.470$ $\beta = 1.487$ $\gamma = 1.540$ $2V(\text{meas.}) = \sim 60^{\circ}$

Cell Data: Space Group: C2/c. a = 25.27(5) b = 9.65(3) c = 11.56(3) $\beta = 94°17(5)'$ Z = 4

X-ray Powder Pattern: Synthetic.

3.16 (100), 3.09 (100), 5.70 (60), 2.876 (60), 3.01 (50), 8.98 (40), 5.44 (30).

Chemistry:

	(1)	(2)
B_2O_3	74.2	70.15
$(NH_4)_2O$	9.8	10.49
$\mathrm{H_2O}$	[16.0]	19.36
Total	[100.0]	100.00

(1) Larderello, Italy; H_2O by difference. (2) $(NH_4)_3B_{15}O_{20}(OH)_8 \cdot 4H_2O$.

Occurrence: In boric acid-rich fumarolic lagoons.

Association: Sassolite, larderellite.

Distribution: From Larderello, Val di Cecina, Tuscany, Italy.

Name: For its composition, ammonium borate.

Type Material: National Museum of Natural History, Washington, D.C., USA, 93756, 94172, R6167.

References: (1) Palache, C., H. Berman, and C. Frondel (1951) Dana's system of mineralogy, (7th edition), v. II, 366–367. (2) Clark, J.R. and C.L. Christ (1959) Studies of borate minerals (VII): X-ray studies of ammonioborite, larderellite, and the potassium and ammonium pentaborate tetrahydrates. Amer. Mineral., 44, 1150–1158. (3) Merlino, S. and F. Sartori (1971) Ammonioborite: new borate polyion and its structure. Science, 171, 377–379.