
Kadioshack

Communications Projects

Forrest M. Mims III

CIRCUIT SYMBOLS

ENGINEER'S MINI-NOTEBOOK

COMMUNICATIONS PROJECTS

BY FORREST M. MIMS, III

SECOND EDITION
SEVENTH PRINTING-1998

A SILICONCEPTS BOOK

COPYRIGHT 1987 BY FORREST M. MIMS, III

ALL RIGHTS RESERVED

PRINTED IN THE UNITED STATES OF AMERICA

THIS BOOK INCLUDES STANDARD APPLICATION CIRCUITS AND CIRCUITS DESIGNED BY THE AUTHOR. EACH CIRCUIT WAS ASSEMBLED AND TESTED BY THE AUTHOR AS THE BOOK WAS DE VELOPED. AFTER THE BOOK WAS COMPLETED, THE AUTHOR REASSEMBLED EACH CIRCUIT TO CHECK FOR ERRORS. WHILE REASONABLE CARE WAS EXERCISED IN THE PREPARATION OF THIS BOOK, VARIATIONS IN COMPONENT TOLERANCES AND CONSTRUCTION METHODS MAY CAUSE THE RE SULTS YOU OBTAIN TO DIFFER FROM THOSE GIVEN HERE. THEREFORE THE AUTHOR AND RADIO SHACK ASSUME NO RESPONSIBILITY FOR THE SUITABILITY OF THIS BOOK'S CONTENTS FOR ANY APPLICATION. SINCE WE HAVE NO CONTROL OVER THE USE TO WHICH THE IN FORMATION IN THIS BOOK IS PUT, WE ASSUME NO LIABILITY FOR ANY DAMAGES RESULTING FROM ITS USE. OF COURSE IT IS YOUR RESPONSIBILITY TO DETERMINE IF COMMERCIAL USE, SALE OR MANUFACTURE OF ANY DEVICE THAT INCORPORATES INFOR-MATION IN THIS BOOK INFRINGES ANY PATENTS, COPYRIGHTS OR OTHER RIGHTS.

RADIO SHACK AND THE AUTHOR, IT IS NOT POSSIBLE TO PROVIDE PERSONAL RESPONSES TO REQUESTS FOR ADDITIONAL INFORMATION (CUSTOM CIRCUIT DESIGN, TECHNICAL ADVICE, TROUBLESHOOTING ADVICE, ETC.). IF YOU WISH TO LEARN MORE ABOUT ELECTRONICS, SEE OTHER BOOKS IN THIS SERIES AND RADIO SHACK'S "GETTING STARTED IN ELECTRONICS." ALSO, READ MAGAZINES LIKE MODERN ELECTRONICS. AND RADIO-ELECTRONICS. THE AUTHOR WRITES A MONTHLY COLUMN, "ELECTRONICS NOTEBOOK," FOR MODERN ELECTRONICS.

CONTENTS

INTRODUCTION		5
CONNECTED LINKS		. 6
WIRELESS LINKS		7
ELECTROMAGNETIC RADIATION		8-9
INTERNATIONAL MORSE CODE		10
LEARNING THE CODE		10
CODE PRACTICE OSCILLATORS		11
ELECTROMAGNETIC TELEGRAPH	12	- 13
SOLID-STATE TELEGRAPHS	14	- 15
TELEPHONE RECEIVER		16
PUSH-TO-TALK INTERCOM		17
LIGHTWAVE COMMUNICATIONS		18
MODULATION LIGHT SOURCES LIGHT DETECTORS LIGHT WAVE SYSTEMS FREE SPACE LINKS OPTICAL FIBER LINKS ELECTRONIC PHOTOPHONE LIGHT WAVE CODE TRANSMITTERS LIGHT WAVE CODE RECEIVERS FLASHLIGHT VOICE TRANSMITTERS GENERAL PURPOSE RECEIVERS AM LIGHTWAVE TRANSMITTER AM LIGHTWAVE RECEIVER PFM LIGHTWAVE RECEIVER	22-	18 19 20 21 22 22 24 25 27 28 29 31 31

RADIO COMMUNICA	TIONS	32
MODULATION AMATEUR RADIO CITIZENS BAND RADIO FCC DIODE RECEIVER BASI SIMPLE RF TUNING SIMPLE DIODE RECEIVE RECEIVER WITH AMPL SHORTWAVE LISTENIN SHORTWAVE RADIO ANTENNAS ANTENNA SAFETY BASIC RADIO TRANSM TRANSISTOR RF TRAN CODE TRANSMITTER VOICE TRANSMITTER AUTOMATIC TONE TRA FCC REGULATIONS GOING FURTHER	CS COIL VER LIFIER IG MITTERS ISMITTER	32 33 33 34 35 35 36 37 38 39 40 - 41 42 - 43 44 45 46 - 47 48 48
HISTORICAL MILES	TONES	
1836 - SAMUEL F. B. MORSE 1876 - ALEXANDER GRAHAM 1880 - ALEXANDER GRAHAM 1880 - PHOTOPHONE SENDS 1886 - HEINRICH HERTZ INV 1895 - GUGLIELMO MARCONI 1897 - NIKOLA TESLA SENDS 1899 - MARCONI SENDS"" 1899 - A. FREDERICK COLLIN 1907 - LEE DE FOREST INVEN	BELL INVENTS TELE BELL INVENTS PHOT VOICE 213 METERS ENTS SPARK TRANS INVENTS WIRELESS TE RADIO SIGNAL 20 M ACROSS ATLANTIC S SENDS VOICE OVE	OPHONE. MITTER. LEGRAPH. MILES. OCEAN. R RADIO. TUBE.

1923-0. V. LOSSEV INVENTS CRYSTAL AMPLIFIERS.

1940-T. H. MAIMAN BUILDS FIRST RUBY LASER.

DISTANCE LIGHTWAVE LINKS.

19 47 - BELL LABS INVENTS TRANSISTOR.

19 25-J. E. LILIENFELD INVENTS FIELD-EFFECT AMPLIFIER.

19 62-G.E., MIT AND IBM INVENT SEMICONDUCTOR LASER.
19 66-K.C. KAO PROPOSES OPTICAL FIBERS FOR LONG

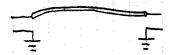
INT RODUCTION

ELECTRONIC COMMUNICATION IS THE TRANSFER OF IN FORMATION FROM ONE POINT TO ANOTHER BY A DIRECT ELECTRICAL CONNECTION (WIRE OR CABLE), WAVEGUIDE (OPTICAL FIBER OR MICROWAVE TRANSMISSION LINE) OR BY WIRELESS MEANS (RADIO, TELEVISION, MICROWAVE OR LIGHTWAVE).

THERE ARE MANY CATEGORIES OF ELECTRONIC COMMUNICATION. FOR INSTANCE, VOICE COMMUNICATIONS CAN BE 1-WAY AS IN A RADIO OR TELEVISION NEWS BROADCAST. OR VOICE COMMUNICATIONS CAN BE 2-WAY AS IN CONVERSATIONS VIA TELEPHONE, INTERCOM AND BOTH AMATEUR AND CITIZENS BAND RADIO. EXAMPLES OF NON-VOICE COMMUNICATION INCLUDE MORSE CODE, TELETYPEWRITER SIGNALS, COMPUTER DATA TRANSMISSION AND WILDLIFE TELEMETRY. RADIO CONTROL IS A FORM OF COMMUNICATION IN WHICH THE TRANSMITTED INFORMATION CONTROLS A REMOTE DEVICE SUCH AS A CAMERA, GARAGE DOOR OR MODEL BOAT OR PLANE.

CIRCUIT ASSEMBLY TIPS

THE CIRCUITS THAT FOLLOW CAN BE ASSEMBLED FROM READILY AVAILABLE SUPPLIES. YOU CAN USUALLY SUBSITUTE SIMILAR COMPONENTS IF THOSE SPECIFIED ARE UNAVAILABLE. FOR INSTANCE, A 25,000 (SOK) OHM POTENTIOMETER CAN BE SUBSTITUTED FOR A 10,000 (10K) UNIT. BE SURE TO BYPASS THE POWER SUPPLY PINS OF OPERATIONAL AND POWER AMPLIER ICS (TIE THEM TO GROUND WITH A 0.1 MF CAPACITOR CONNECTED CLOSE TO THE IC). THIS WILL HELP PREVENT UNWANTED OSCILLATION. FOR ADDITIONAL INFORMATION SEE "GETTING STARTED IN ELECTRONICS" (RADIO SHACK, 1983) AND OTHER BOOKS IN THIS SERIES.


5

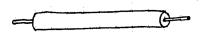
COMMECTED COMMUNICATION LINKS

CONNECTED COMMUNICATION LINKS ARE THOSE IN WHICH TWO OR MORE STATIONS ARE LINKED BY A WIRE, CABUE OR WAVEGUIDE.

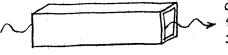
ADVANTAGES INCLUDE RELIABILITY, LOW NOISE AND SIMPLE ELECTRONICS. HOWEVER, CONNECTED LINKS REQUIRE RIGHT-OF-WAY AND CAN BE VERY EXPENSIVE TO INSTALL. FURTHERMORE, ONLY COMMECTED STATIONS CAN COMMUNICATE.

SINGLE WIRE

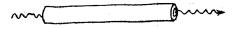
TELEGRAPH LINKS.


GROUND REQUIRED AT
EACH END.

TWISTED PAIR


TELEPHONES (UP TO 15 CHANNELS) AND DIGITAL DATA TRANSMISSION.

COAXIAL CABLE

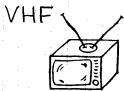

CAN CARRY UP TO 90,000 VOICE CHANNELS.

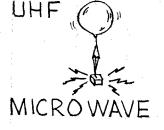
HOLLOW WAVEGUIDE

CAN CARRY MICROWAVE SIGNAL MODULATED WITH 100,000 + VOICE CHANNELS.

OPTICAL FIBER

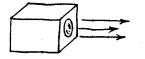
CAN CARRY LIGHTWAVE MODULATED WITH 100,000 OR MORE VOICE CHANNELS.


WIRELESS COMMUNICATION LINKS


WIRELESS COMMUNICATIONS LINKS ARE THOSE IN WHICH INFORMATION IS SENT TO ONE OR MORE RECEIVERS BY MEANS OF A MODULATED ELECTROMAGNETIC WAVE.

ADVANTAGES INCLUDE LONG DISTANCE COMMUNICATION, TRANSMISSION TO AND FROM LAND, AIR AND SPACE VEHICLES AND BOTH DIRECTIONAL AND NON-DIRECTIONAL TRANSMISSION. SUBJECT TO INTERFERING NOISE.

RADIO



LIGHTWAVE

BROADCAST AND SHORTWAVE RADIO. ALSO AMATEUR RADIO, CITIZENS BAND, MOBILE, ETC.

TELEVISION AND FM RADIO.
ALSO AIRCRAFT, AMATEUR
RADIO, MOBILE, SPACE, ETC.

WEATHER BALLOONS, TELEVISION, MOBILE, NAVIGATION, AMATEUR, SATELLITE, DEEP SPACE, ETC.

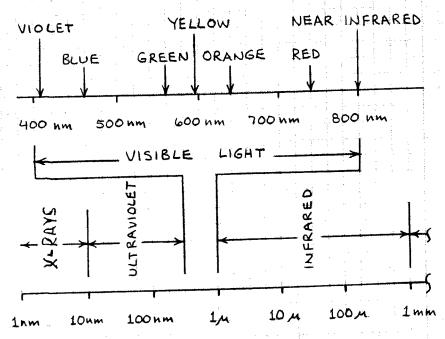
COMMUNICATIONS SATELLITE, LONG DISTANCE TELEPHONE, NAVIGATION, AMATEUR, ETC.

LINE-OF-SIGHT COMPUTER DATA TRANSMISSION AND VOICE LINKS.

ELECTROMAGNETIC RADIATION

ELECTROMAGNETIC RADIATION IS ENERGY IN THE FORM OF A WAVE OF OSCILLATING ELECTRIC AND MAGNETIC FIELDS. THE WAVE TRAVELS THROUGH A VACUUM AT A VELOCITY OF 2.998 × 108 METERS PER SECOND (186,284 MILES PER SECOND). THE WAVELENGTH OF AN ELECTROMAGNETIC WAVE DETERMINES ITS PROPERTIES. X-RAYS, INFRARED, MICROWAVES, RADIO WAVES AND LIGHT ARE ELECTROMAGNETIC RADIATION.

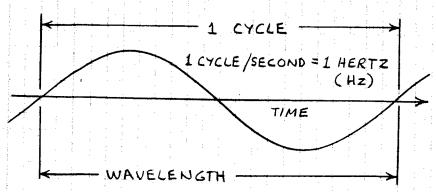
ELECTROMAGNETIC SPECTRUM


MM = NANOMETER (1nm = .000 000 001 METER)

M = MICROMETER (1 M = .000 001 METER)

MM = MILLIMETER (1mm = .001 METER)

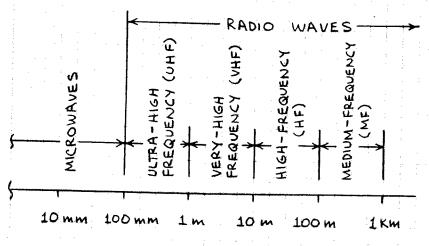
M = METER (1 m = 39.37 INCHES)


KM = KILOMETER (1 KM = 1,000 METERS)

WAVELEN GTH

WAVELENGTH VS FREQUENCY

THE FREQUENCY OF AN ELECTROMAGNETIC WAVE IS THE NUMBER OF CYCLES THAT OCCUR. IN ONE SECOND.



IF EITHER THE FREQUENCY OR LENGTH OF A WAVE IS KNOWN, THE UNKNOWN VALUE CAN BE CALCULATED:

FREQUENCY (Hz) = C/WAVELENGTH (X)

WAVELENGTH () = C/FREQUENCY (Hz)

C = 3 × 10 8 METERS PER SECOND

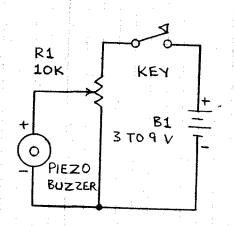
WAVELENGTH

INTERNATIONAL MORSE CODE

IN 1836, SAMUEL F.B. MORSE BUILT THE FIRST WORKING TELEGRAPH. HE ALSO DEVISED A CODE THAT PERMITTED TELEGRAPH OPERATORS TO EXCHANGE INFORMATION. HIS CODE IS STILL USED BY TELEGRAPH, RADIO AND SIGNAL LIGHT OPERATORS. HERE IT IS:

				化基环基子 化二氯甲烷 医二甲烷二二甲烷
A	. • -	N	·	1
B		0		
Ē		P		3
D		Q		4 • • • • -
E		R		5
F		S		6 - • • • •
Ġ		T	-	7 • • •
H		U.	–	8
I	* • · · · · · · · · · · · · · · · · · ·	V		9 •
\overline{z}		W		0
K		×	–	
Ĺ		Y		?
\overline{M}		Z		
	· ·			

THE CODE INCLUDES MANY ADDITIONAL PUNCTUATION MARKS, PHRASES AND ABBREVIATIONS.

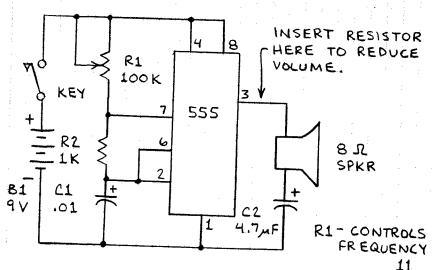

LEARNING THE CODE

THINK OF THE CODE AS SOUNDS, NOT DOTS AND DASHES. SAY "DIT" FOR DOT AND "DAH" FOR DASH. THUS A 15 "DIT DAH" OR SIMPLY "DIDAH." B IS "DAHDIDIDIT." C IS "DAHDIDAHDIT." A CODE PRACTICE OSCILLATOR CAN HELP YOU LEARN THE CODE. EVEN BETTER IS THE CASSETTE TAPE INCLUDED WITH THE "TUNE IN THE WORLD WITH HAM RADIO" KIT AVAILABLE FROM THE AMERICAN RADIO RELAY LEAGUE (ARRL) IN NE WINGTON, CT OG 111. THE TEXT SUPPLIED WITH THE KIT IS AN EXCELLENT INTRODUCTION TO THE WORLD OF AMATEUR RADIO. IT COVERS ELECTRICAL THEORY, EQUIPMENT, ANTENNAS, ETC.

CODE PRACTICE OSCILLATORS

A RADIO TRANSMITTER REQUIRES LESS POWER TO TRANSMIT CODE THAN VOICE. MOREOVER, CODE CAN BE UNDERSTOOD WHEN THE SIGNAL IS VERY FAINT OR WHEN STATIC IS SO SEVERE THAT VOICE IS UNINTELLIGIBLE. THESE WILL HELP YOU LEARN CODE.

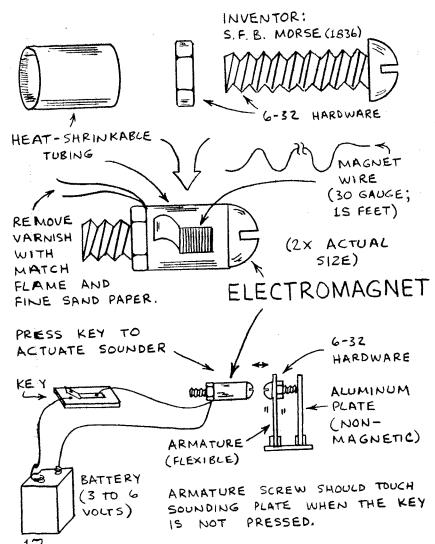
PIEZOBUZZER CPO

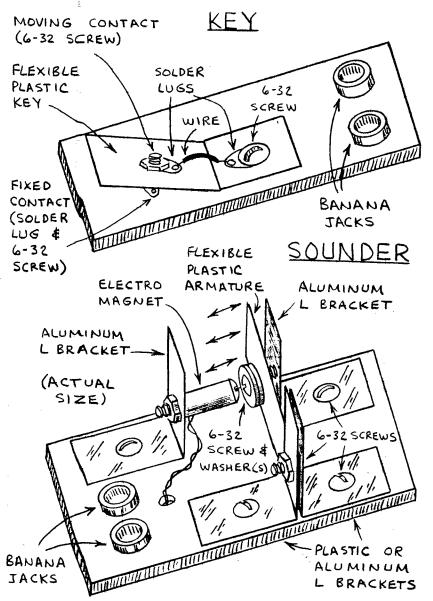


KEY-USE TELEGRAPH KEY FOR BEST RESULTS. PUSHBUTTON SWITCH OK FOR TEMPORARY USE.

R1-CONTROLS THE VOLUME.

PIEZO BUZZER - BEST TO USE LOW FRE-QUENCY, STEADY TONE UNIT.

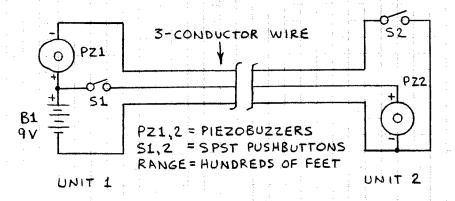

INTEGRATED CIRCUIT CPO



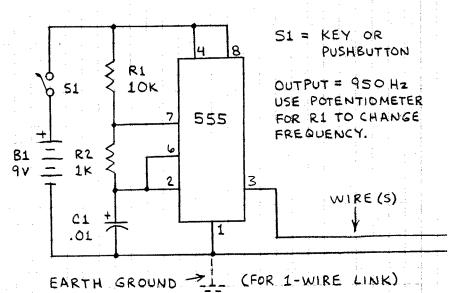
11

ELECTROMAGNETIC TELEGRAPH

THERE ARE MANY WAYS TO MAKE SIMPLE TELEGRAPHS. FOR EXAMPLE, THE CODE PRACTICE OSCILLATORS ON THE PREVIOUS PAGE CAN BE USED IN A SOLID-STATE TELEGRAPH SYSTEM. THE COMPONENTS OF A DO-IT-YOURSELF ELECTROMAGNETIC TELEGRAPH ARE GIVEN HERE. YOU CAM BUILD THE TELEGRAPH ON THE FACING PAGE IN A FEW HOURS.

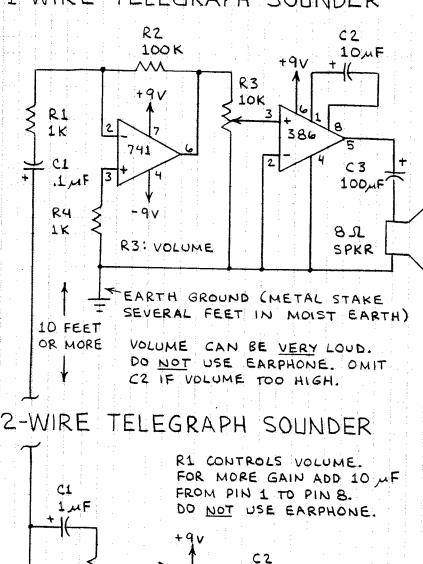

CONNECT KEY, SOUNDER AND BATTERY WITH WIRES FITTED WITH BANANA PLUGS. USE WOOD OR PERF-BOARD FOR BASES. USE ALLIMINUM BRACKETS FROM HARDWARE STORE OR MAKE FROM HOBBY SHOP METAL. CUT PLASTIC ARMATURE FROM ONE GALLON MILK CONTAINER. DOT = PRESS/RELEASE (CLICK/CLICK). DASH = PRESS/HOLD/RELEASE (CLICK/SPACE/CLICK).

SOLID-STATE TELEGRAPHS


TRANSISTORS AND INTEGRATED CIRCUITS MAKE POSSIBLE VERY SENSITIVE TELEGRAPH SYSTEMS.

CAUTION: NEVER INSTALL TELEGRAPH, INTERCOM OR TELEPHONE WIRES NEAR OUTDOOR POWER LINES.

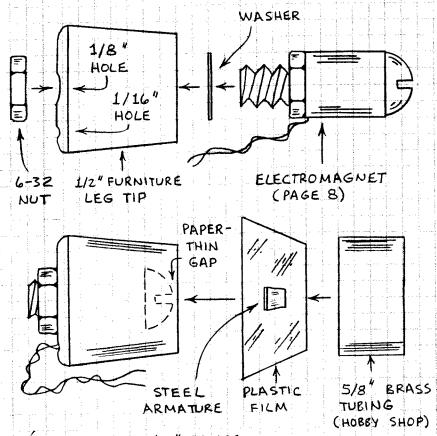
SIMPLE SOLID-STATE TELEGRAPH



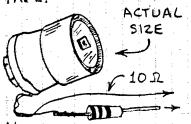
1- OR 2-WIRE TELEGRAPH SENDER

14

1-WIRE TELEGRAPH SOUNDER



100 MF 10K 386 82 SPKR CIRCUIT, NOT EARTH, GROUND


R1

TELEPHONE RECEIVER

A SIMPLE TELEPHONE RECEIVER IS EASILY MADE FROM READILY AVAILABLE MATERIALS:

ARMATURE IS 3/16" SQUARE, 1/32" THICK STEEL (SCRAP OR CUT FROM SHEET). ATTACH TO PLASTIC WITH DOUBLE-SIDED TAPE.

INVENTOR: PROF. A.G. BELL (1876)

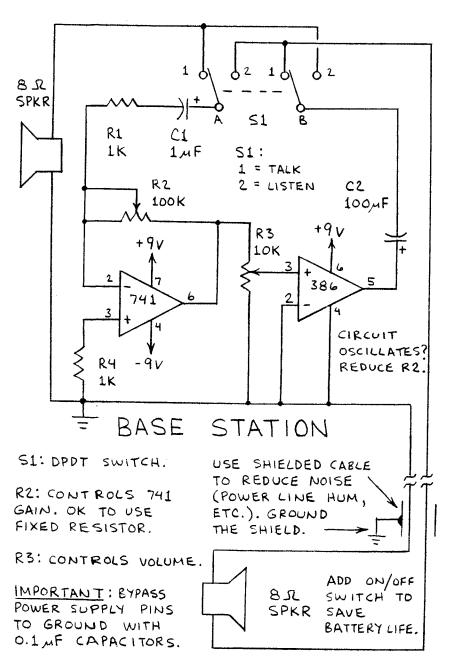
ADD 10 OHM RESISTOR.

CONNECT LEADS TO

BATTERY-POWERED

RADIO PHONE JACK

TO TEST, VOLUME WILL


BE LOW SINCE COIL

RESISTANCE IS ONLY

1.56 OHMS.

16

PUSH-TO-TALK INTERCOM

REMOTE STATION

LIGHTWAVE COMMUNICATIONS

1880 - ALEXANDER GRAHAM BELL INVENTED THE PHOTOPHONE, A DEVICE FOR SENDING VOICE OVER A BEAM OF SUNLIGHT.

1880- BELL AND SUMNER TAINTER SENT VOICE MESSAGES OVER A 213 METER PATH.

1966 - K.C. KAO PROPOSED LONG DISTANCE OPTICAL FIBER COMMUNICATIONS.

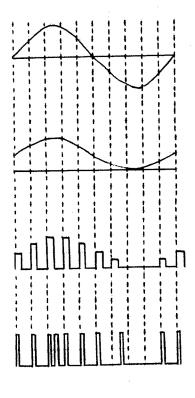
MODULATION

A LIGHTWAVE CAN CARRY DIGITAL DATA OR ANALOG INFORMATION SUCH AS VOICE. SHOWN BELOW ARE SOME WAYS IN WHICH A LIGHT WAVE CAN BE ANALOG MODULATED.

ANALOG SIGNAL

TYPICAL ANALOG SIGNAL (TEMPERATURE, TONE, ETC.).

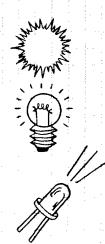
AMPLITUDE


AMALOG SIGNAL CONTROLS INTENSITY OF LIGHT.

PULSE AMPLITUDE

ANJALOG SIGNAL CONTROLS INTENSITY OF PULSES.

PULSE FREQUENCY


AMALOG SIGNAL CONTROLS FREQUENCY OF PULSES.

LIGHT SOURCES

MANY LIGHT SOURCES CAN BE USED IN LIGHTWAVE COMMUNICATION SYSTEMS. AMONG THE EASIEST TO USE ARE:

- 1. SUNLIGHT USED IN THE FIRST LIGHTWAVE
 COMMUNICATORS AND STILL VERY
 EASY TO USE.
- 2. INCANDESCENT LAMP-LAMPS WITH SMALL FILAMENTS CAN BE VOICE MODULATED, NOT SUITABLE FOR HIGH FREQUENCY SIGNALS.
- 3. LIGHT EMITTING DIODE (LED) -IDEAL SOURCE. BOTH VISIBLE AND
 INVISIBLE WAVELENGTHS. CAN BE
 MODULATED AT HIGH FREQUENCIES.

LIGHT DETECTORS

DETECTORS FOR LIGHTWAVE COMMUNICATION LINKS ARE USUALLY SOLID-STATE DEVICES.
AMONG THE MOST COMMONLY USED ARE:

- 1. SOLAR CELLINEXPENSIVE AND EASY TO USE. PEAK
 SENSITIVITY IS ~ 880 NM. CAN BE
 USED FROM ~450 NM TO 1100 NM.
- 2. PHOTOTRANSISTOR —
 FASTER AND MORE SENSITIVE THAN
 SOLAR CELLS, SAME SPECTRAL RESPONSE.
 EXTERNAL LENS HELPFUL.
- 3. LIGHT EMITTING DIODE -AN LED CAN DETECT THE EMISSION FROM A SIMILAR LED. RED AND NEAR-INFRARED LEDS WORK BEST AS DETECTORS.

LIGHTWAVE SYSTEMS

MODULATED LIGHTWAVES CAN BE SENT THROUGH AIR (FREE SPACE) OR ULTRA-CLEAR OPTICAL FIBERS.

LINK	ADVANTAGES	DISADVANTAGES
FREE SPACE	1. NO LICENSE 2. PRIVACY 3. JAM PROOF	1. HARD TO ALIGN 2. LINE OF SIGHT 3. RAIN AND FOG
FIBER	1. VERY LOW NOISE 2. LIGHTNING PROOF 3. SECURITY	1. INSTALLATION 2. HIGHER COST 3. HARD TO SPLICE

FREE SPACE LINKS

THORT RANGE SYSTEMS (OTO 10 FEET) VERY EASY TO DESIGN AND ALIGN. LONGER RANGES USUALLY PREQUIRE EXTERNAL LENSES AND TRIPODS.

ALIGNMENT METHODS INCLUDE:

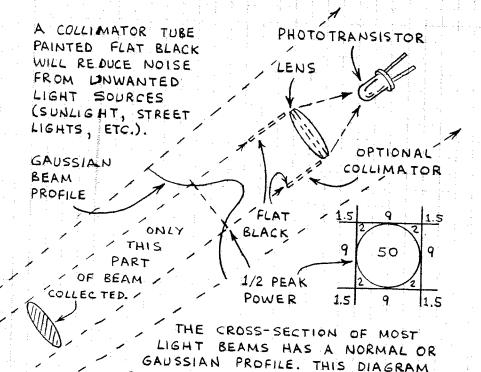
1. REFLECTOR - USE RED LED AND
PLACE BIKE REFLECTOR NEXT TO
RECEIVER. POINT TRANSMITTER, LENS:
AT REFLECTOR. OK TO USE

2. TELESCOPE - BORESIGHT, (DEPARTMENT - FREE A SMALL TELESCOPE - STORE, ETC.) - SPACE MOUNTED ON THE RANGE TRANSMITTER. EQUATION

(APPROXIMATE)

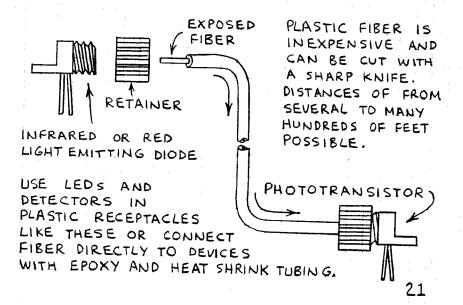
R = \ Po Arec

LENS
R=VPo Arco

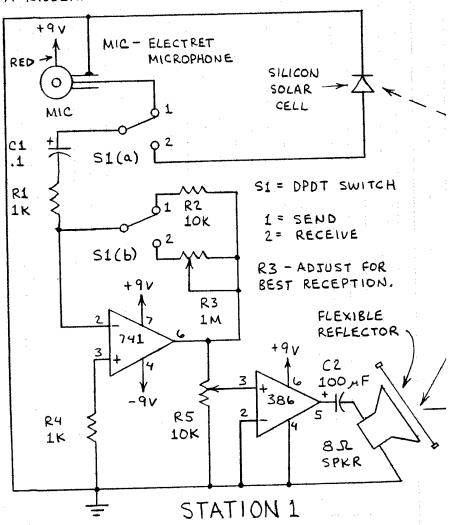

R= RECEPTION RANGE (METERS)

Po= LED POWER (MILLIWATTS)

Arec = RECEIVER LENS AREA (METERS)


Pth = DETECTOR SENSITIVITY (MILLIWATTS)

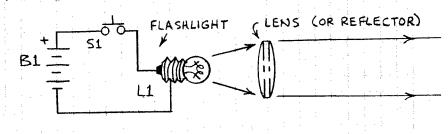
0 = LED BEAM DIVERGENCE (RADIANS)


SHOWS THE PERCENTAGE OF LIGHT WITHIN THE BEAM. (NUMBERS IN %.)

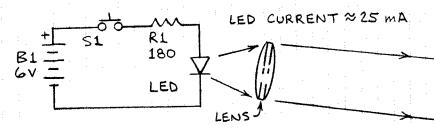
OPTICAL FIBER LINKS

ELECTRONIC PHOTOPHONE

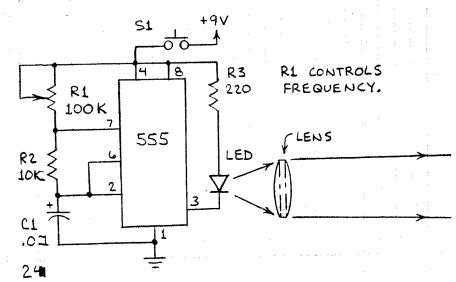
AFTER HE INVENTED THE PHOTOPHONE IN 1880, ALEXANDER GRAHAM BELL INVENTED THE ELECTRIC PHOTOPHONE A BEAM OF SUNLIGHT WAS DIRECTLY MODULATED BY VOICE PRESSURE AGAINST A FLEXIBLE MIRROR OR MOVABLE GRATING. IN THE ELECTRIC PHOTOPHONE SUNLIGHT WAS MODULATED BY A MIRROR ATTACHED TO A TELEPHONE RECEIVER. SHOWN HERE IS A MODDERN VERSION OF THE ELECTRIC PHOTOPHONE.



KEEP BATTERY LEADS SHORT AND CONNECT O.1 MF SUN CAPACITORS FROM POWER SUPPLY PINS OF EACH CHIP TO GROUND. FLEXIBLE REFLECTOR IS IMPORTANT: ALUMINIZED MYLAR OR THE SPEAKERS HEAVY DUTY ALUMINUM MAY EMIT VERY FOIL STRETCHED OVER LOUD SOUNDS. SPEAKER OR HOLE DO NOT PLACE IN BOX IN WHICH YOUR EARS SPEAKER IS CLOSE TO INSTALLED. USE EITHER CAUTION: ALUMINIZED MYLAR SPEAKER. BOTH OPERATORS FROM EMERGENCY MUST WEAR BLANKET OR SUNGLASSES AND PACKAGING AVOID STARING MATERIAL. AT REFLECTED SUNLIGHTI FLEXIBLE REFLECTOR USE TRIPODS FOR BEST RESULTS. REFLECTED SUNLIGHT FROM FLEXIBLE REFLECTOR SHOULD FORM A DISTINCT SPOT DIRECTED AGAINST A NEARBY WALL. SOLAR CELL (SEE FACING PAGE): NOTE THAT THE SPEAKERS FUNCTION AS SOUND STATION 2 SOURCE IN RECEIVE MODE.


LIGHTWAVE CODE TRANSMITTERS

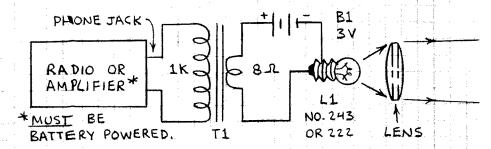
SIMPLE CODE COMMUNICATORS CAN BE USED TO SEND MESSAGES, WARNING SIGNALS, ETC.


FLASHLIGHT SYSTEM

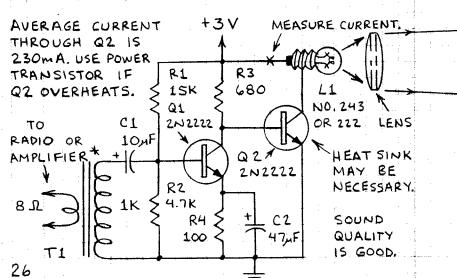
INFRARED SYSTEM

PULSE MODULATED SYSTEM

LIGHTWAVE CODE RECEIVERS

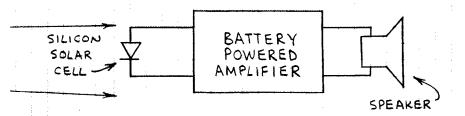

THESE RECEIVERS MUST BE KEPT FROM EXTERNAL LIGHT SOURCES. THE FIRST TWO ARE LIGHT - ACTUATED TONE GENERATORS.

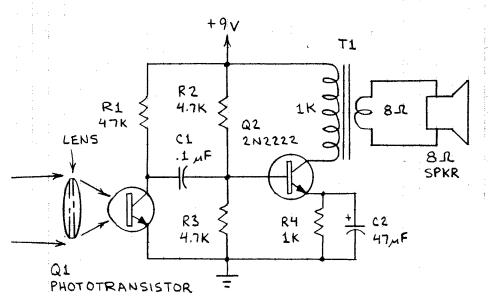
FLASHLIGHT VOICE TRANSMITTERS


THESE SIMPLE AM SYSTEMS DEMONSTRATE THAT INCANDESCENT LAMPS CAN BE VOICE MODULATED.

BASIC VOICE TRANSMITTER

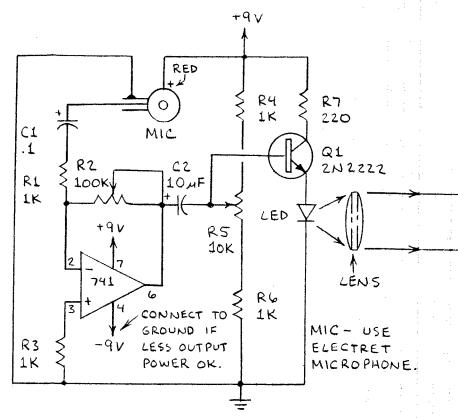
T1 IS MINIATURE 1K: BIL OUTPUT TRANSFORMER. SINCE MOST PHONE JACKS ARE BIL, MUCH BETTER RESULTS WILL BE OBTAINED WITH TWO BACK-TO-BACK TRANSFORMERS. CONNECT 1K WINDINGS OF THE TRANSFORMERS TOGETHER. THEN CONNECT ONE BIR WINDING TO RADIO OR AMPLIFIER AND THE OTHER TO THE LAMP AND BATTERY.


BETTER VOICE TRANSMITTER


GENERAL PURPOSE RECEIVERS

THESE SIMPLE RECEIVERS CAN RECEIVE ANY AMPLITUDE MODULATED (AM) LIGHTWAVE SIGNALS.

BASIC VOICE RECEIVER

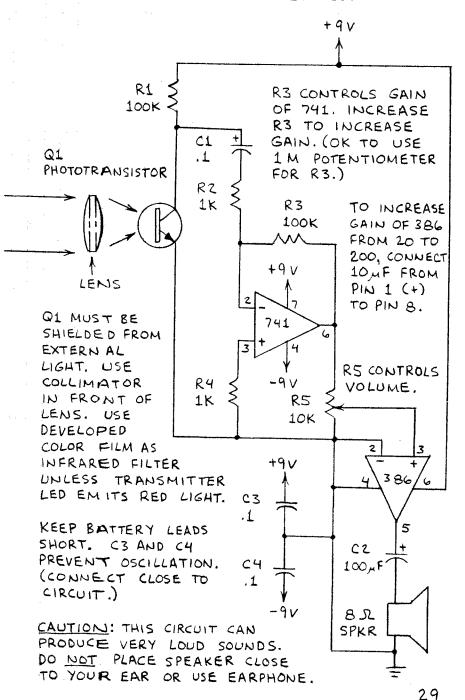

TRANSISTOR VOICE RECEIVER

OK TO DELETE Q1, R1 AND C1 AND CONNECT SOLAR CELL BETWEEN Q2'S BASE (CELL ANODE) AND GROUND (CELL CATHODE).

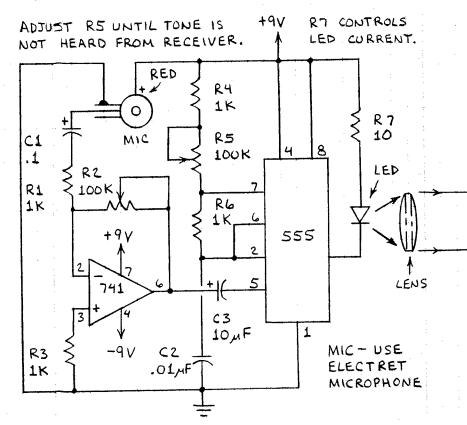
FOR MORE VOLUME USE RECEIVER ON PAGE 29.

AM LIGHTWAVE TRANSMITTER

THIS TRANSMITTER WILL SEND YOUR VOICE TO THE RECEIVER ON FACING PAGE. AT NIGHT AND WHEN LENSES ARE USED, A RANGE OF SEVERAL HUNDRED OR MORE FEET IS POSSIBLE. INFRARED LED WILL GIVE BEST RESULTS. HIGH-BRIGHTNESS RED LED WILL ALSO WORK, ESPECIALLY WHEN OPTICAL FIBER IS USED. USE TRIPODS FOR BEST RESULTS IN FREE-SPACE MODE. LENS CAN BE MAGNIFIER.


R2 - GAIN CONTROL

R5 - LED BIAS CONTROL. ADJUST R5 FOR BEST SOUND QUALITY AT RECEIVER.


R7 - LIMITS CURRENT APPLIED TO LED.

KEEP BATTERY LEADS SHORT. 28

AM LIGHTWAVE RECEIVER

PFM LIGHTWAVE TRANSMITTER

TRANSMITTER: R2 CONTROLS GAIN OF 741
MICROPHONE AMPLIFIER. 555 GENERATES STEADY
STREAM OF PULSES HAVING A REPETION RATE CONTROLLED BY R5. AUDIO SIGNAL APPLIED TO PIN5
OF 555 MODULATES THE PULSE RATE. USE SUPER
BRIGHT RED OR INFRARED LED. KEEP BATTERY
LEADS SHORT. PFM GIVES UNIFORM RECEIVER VOLUME.

RECEIVER: Q1 RECEIVES PULSES FROM THE LED.
THE PULSES ARE AMPLIFIED BY THE FIRST 741.
THE SECOND 741 IS CONNECTED AS A COMPARATOR
THAT DELIVERS AN OUTPUT PULSE WHEN THE INPUT
PULSE EXCEEDS THE REFERENCE VOLTAGE SET BY
R4. THE PULSES ARE LOW-PASS FILTERED BY R5 AND
C3 AND AMPLIFIED BY THE 386. ADJUST RS OF TRANSMITTER AND R4 OF RECEIVER FOR BEST SOUND QUALITY.
30

PFM LIGHTWAVE RECEIVER UNLIKE AM, PFM GIVES UNIFORM VOLUME OVER ENTIRE RECEPTION RANGE . RS AND C3 RI REDUCE R2 TO FORM 100K. . 1 REDUCE GAIN LOW- PASS OF FIRST 741. FILTER. Q1 INCREASE PHOTO-R2 R1 C3 FROM TRANSISTOR 1K 1M 1 MF TO 10 MF TO CHANGE EMPHASIS +9V FROM HIGH TO LOW FREQUENCIES. 741 LENS 741 Q1 MUST BE SHIELDED R3 R4 FROM 1K R4: 10K EXTERNAL CONTROL **R**5 LIGHT. USE THRESHOLD 1 K COLLIM ATOR IN FRONT OF VOLUME LENS. KEEP BATTERY R6 C3 LEADS SHORT. 10K 1 to 10 uF C4 AND C5 HELP PREVENT 3 +9V OSCILLATION. 386 CAUTION: THIS CIRCUIT £ىر100 F CAN PRODUCE VERY LOUD SOUNDS . DO NOT 82 PLACE SPEAKER SPKR CLOSE TO YOUR EAR OR USE EARPHONE.

RADIO COMMUNICATIONS

1886-HEINRICH HERTZ SENT WAVES FROM A SPARK DISCHARGE TO A LOOP OF WIRE. A SMALL SPARK APPEARED AT A GAP IN THE LOOP

1895-GUGLIELMO MARCONI INVENTED THE WIRELESS TELEGRAPH.

1899 - MARCONI SENT "..." ACROSS ATLANTIC OCEAN.

MODULATION

WHEN A PURE RADIO-FREQUENCY WAVE (THE CARRIER) IS MIXED WITH A SIGNAL SUCH AS VOICE, THE WAVE IS SAID TO BE MODULATED.

DAMPED WAVE (SPARK GAP)

OK FOR CODE, BUT NOT

LEGAL SINCE MANY WAVE-LENGTHS ARE EMITTED.

CARRIER WAVE

AMMODULATED RADIO-FREQUENCY WA

RADIO-FREQUENCY WAVE; NO SIGNAL CARRIED.

AMPLITIDE MODULATION

CONSTANT FREQUENCY; AMPLITUDE VARIES WITH INPUT SIGNAL (VOICE, ETG.)

FREQUENCY MODULATION

MANAMANT AMPLITUDE;

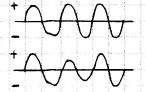
FREQUENCY VARIES WITH INPUT SIGNAL (VOICE, ETC.). GIVES NOISE-FREE RECEPTION

AMATEUR RADIO

RADIO COMMUNICATION HAS ALWAYS ATTRACTED
MANY THOUSANDS OF ENTHUSIASTIC AMATEUR
RADIO OPERATORS. THEY WERE AMONG THE FIRST
TO DISCOVER THAT SHORTWAVES PERMIT WORLDWIDE
COMMUNICATION. THEY PROVIDE COMMUNICATIONS
DURING NATURAL DISASTERS AND EMERGENCIES.
AND THEY COMMUNICATE WITH FELLOW AMATEURS
ACROSS TOWN AND HALFWAY AROUND THE WORLD.

AMATEUR OR HAM RADIO OPERATORS ARE LICENSED AND A SSIGNED A CALL SIGN BY THE FEDERAL GOVERNMENT. PROSPECTIVE HAMS MUST PASS A WRITTEN EXAM. FOR MORE INFORMATION, CONTACT THE AMERICAN RADIO RELAY LEAGUE (ARRL) IN NEWINGTON, CT DG111. THE ARRL SELLS EXCELLENT PUBLICATIONS FOR BOTH PROSPECTIVE AND ESTABLISHED HAMS.

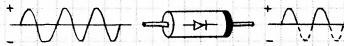
CITIZENS BAND RADIO


THE CITIZENS BAND IS 40 CHANNELS IN THE VICINITY OF 27 MHz. THESE CHANNELS ARE INTENDED FOR TWO-WAY PERSONAL AND BUSINESS COMMUNICATION. ONE CHANNEL (9) IS RESERVED FOR EMERGENCY TRANSMISSIONS. THOUGH NO LICENSE IS REQUIRED, CITIZENS BAND (CB) OPERATORS HAVE FEWER PRIVILEGES THAN AMATEUR RADIO OPERATORS. FOR EXAMPLE, MAXIMUM TRANSMITTED POWER IS LIMITED TO 4 WATTS.

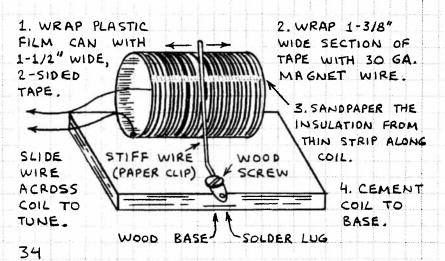
FEDERAL COMMUNICATIONS COMMISSION

THE FEDERAL COMMUNICATIONS COMMISSION (FCC) REGULATES RADIO COMMUNICATION IN THE UNITED STATES. VIOLATIONS OF FCC REGULATIONS CAN RESULT IN SEVERE PENALTIES. YOU CAN WRITE THE FCC (GETTYSBURG, PA 17326) TO REQUEST INFORMATION ABOUT ITS REGULATIONS.

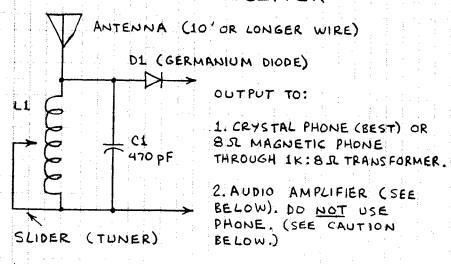
DIODE RECEIVER BASICS


A RADIO-FREQUENCY (RF) ELECTROMAGNETIC WAVE WILL CAUSE A FLUCTUATING CURRENT TO FLOW IN A WIRE ANTENNA:

CURRENT PRODUCED BY TONE-

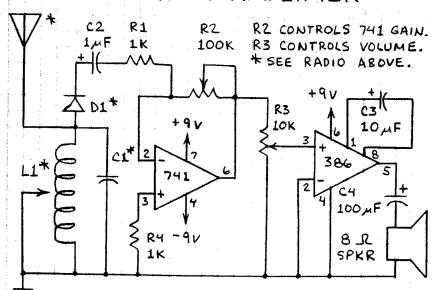

CURRENT PRODUCED BY VOICE + MODULATED RF SIGNAL.

THE FLUCTUATING CURRENT CAN BE TRANSFORMED INTO SOUND BY REMOVING THE POSITIVE OR NEGATIVE HALF OF THE WAVE WITH A DIODE:



THE SIGNAL IS NOW SAID TO BE RECTIFIED. THE TWO HALVES OF THE WAVE WILL NOT CANCEL ONE ANOTHER WHEN THE OUTPUT IS MONITORED. THEREFORE THE AUDIO SIGNAL SUPERIMPOSED ON THE RF SIGNAL CAN BE HEARD FROM A SMALL EARPHONE CONNECTED TO THE DIODE.

SIMPLE RF TUNING COIL



SIMPLE DIODE RECEIVER

L1 IS COIL ON FACING PAGE. TUNING IS SENSITIVE. SOME STATIONS WILL COINCIDE WITH ONE WINDING.

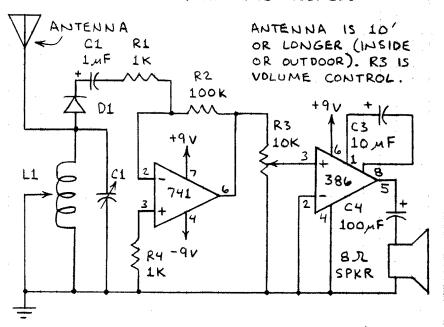
RECEIVER WITH AMPLIFIER

TUNE BY ADJUSTING SLIDER ON L1. LOUD POPS MAY OCCUR WHEN SLIDER IS MOVED. VOLUME CAN BE VERY LOUD. CAUTION: DON'T USE EARPHONES!

SHORTWAVE LISTENING

FEW HOBBIES ARE AS REWARDING OR INTELLECTUALLY STIMULATING AS SHORTWAVE LISTENING. YET MANY PEOPLE HAVE NEVER LISTENED TO A SHORTWAVE RADIO. EVEN A VERY INEXPENSIVE SHORTWAVE RADIO CAN RECEIVE BROADCASTS FROM HUNDREDS OF STATIONS AROUND THE WORLD. MANY OF THEM ARE IN ENGLISH. SHORTWAVE BROADCASTS CAN BE DIVIDED INTO THREE BROAD CATEGORIES:

INTERNATIONAL BROADCASTS—THESE ORIGINATE FROM BOTH PRIVATE AND GOVERNMENT STATIONS AND ARE INTENDED FOR A WIDE AUDIENCE. PROGRAMMING, OFTEN IN ENGLISH, INCLUDES NEWS, WEATHER, INTERVIEWS, DRAMA AND LISTENER MAIL.


PERSONAL COMMUNICATIONS - THIS CATEGORY INCLUDES AMATEUR AND CITIZENS BAND RADIO

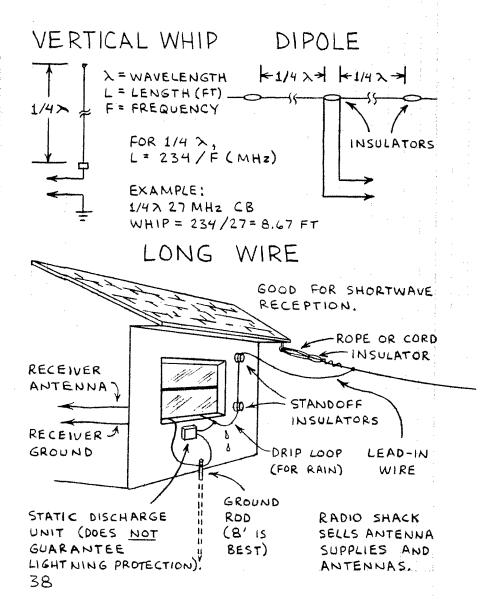
UTILITIES - VIRTUALLY ALL BROADCASTS NOT LISTED ABOVE CAN BE CONSIDERED UTILITIES. THESE INCLUDE TIME SIGNALS, COMPUTER TRANSMISSIONS, WEATHER REPORTS, SATELLITE SIGNALS AND MANY KINDS OF INDUSTRIAL AND GOVERNMENT TRANSMISSIONS. INCLUDED ARE TELECOMMUNICATIONS TO AND FROM SHIPS, AIRCRAFT, TAXIS AND COMMERCIAL VEHICLES. ALSO INCLUDED ARE TRANSMISSIONS FROM SPY, RADIO CONTROL, TRACKING, SURVEILLANCE, TELEMETRY, WEATHER BALLOON AND OCEAN BUOY TRANSMITTERS.

MANY OF THESE TRANSMISSIONS ARE BROAD-CAST AT FREQUENCIES BETWEEN THE BROADCAST BAND AND 30 MHz. THE SIMPLE RECEIVER ON THE FACING PAGE CAN RECEIVE SIGNALS FROM 1 TO 6 MHz. IN ONE EVENING THIS RADIO RECEIVED SIGNALS FROM ASIA, EUROPE, SOUTH AMERICA AND NORTH AMERICA. THE ANTENNA WAS A 14 INDOOR WIRE.

SHORTWAVE RECEIVER

THIS SIMPLE RECEIVER CAN BE ASSEMBLED ON A SOLDERLESS BREADBOARD. THOUGH THIS RECEIVER DOES NOT SEPARATE STATIONS AS WELL AS A COMMERCIAL RECEIVER, IT IS SURPRISINGLY SENSITIVE AND WILL RECEIVE STATIONS FROM AROUND THE WORLD.

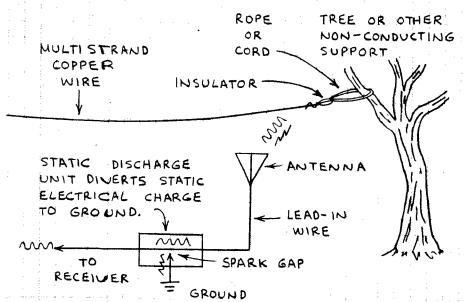
L1 IS 25-50 TURNS OF 30 GAUGE MAGNET WIRE WRAPPED AROUND PLASTIC FILM CAN. SEE TUNING COIL ASSEMBLY DETAILS ON PAGE 34.


C1 IS 10-365 pF VARIABLE CAPACITOR FROM DISCARDED RADIO OR 10-40 pF or so CRYSTAL OSCILLATOR TUNING CAPACITOR.

TUNE BY SETTING LI'S SLIDER TO ANY POSITION AND ADJUST C1. CHANGE LI'S SLIDER POSITION FOR DIFFERENT FREQUENCY RANGES.

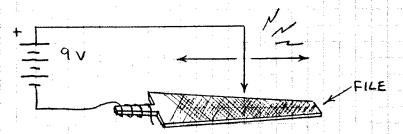
CAUTION: VOLUME CAN BE VERY LOUD, ESPECIALLY WHEN LI'S SLIDER IS MOVED AWAY FROM LI AND LOCAL STATIONS BOOM IN. NO EARPHONES!

ANTENNAS

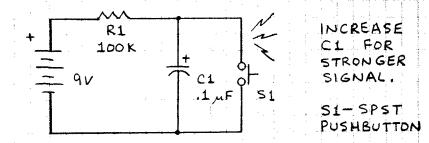

THE PERFORMANCE OF RADIO TRANSMITTERS AND RECEIVERS IS VERY MUCH DEPENDENT ON THEIR ANTENNAS. THE SIMPLEST ANTENNA IS A WIRE OR ROD WHOSE LENGTH EQUALS OR IS 1/4 OR 1/2 THE WAVELENGTH OF THE RECEIVED SIGNAL. THREE COMMON WIRE ANTENNAS ARE:

ANTENNA SAFETY

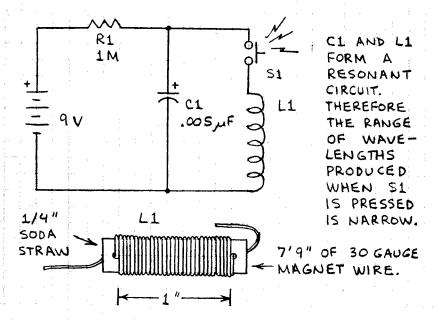
THE INSTALLATION OF AN ANTENNA REQUIRES CAREFUL ATTENTION TO SAFETY. CARELESS NESS CAN RESULT IN SERIOUS INJURY OR A FATAL ELECTRI CAL SHOCK. YOU MUST:


- 1. NEVER INSTALL ANY PART OF AN ANTENNA NEAR A POWER LINE.
- 2. NEVER TOUCH ANY PART OF AN ANTENNA THAT CONTACTS A POWER LINE.
- 3. DISCONNECT AND DO NOT USE AN ANTENNA DURING AN ELECTRICAL STORM.
- 4. CONNECT OUTDOOR ANTENNAS TO A WELL GROUNDED STATIC DISCHARGE UNIT.
- 5. READ THE ANTENNA SAFETY TIPS SUPPLIED WITH COMMERCIAL ANTENNAS AND GIVEN IN "THE ARRL ANTENNA HANDBOOK" AND RADIO SHACK'S "ANTENNAS" (MASTER PUBLISHING, 1986).

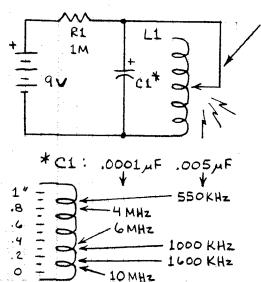
BASIC RADIO TRANSMITTERS


RADIO-FREQUENCY (RF) WAVES ARE CREATED WHEN AN ELECTRICAL CURRENT IS SWITCHED RAPIDLY ON OR OFF. THIS IS WHY A RADIO RECEIVER EMITS A BURST OF STATIC DURING A LIGHTNING DISCHARGE OR A POP WHEN A NEARBY APPLIANCE IS SWITCHED ON.

BROADBAND RF TRANSMITTER


STROKE WIRE ACROSS FILE. BURSTS OF NOISE WILL BE EMITTED BY A NEARBY RADIO. SINCE MANY DIFFERENT WAVELENGTHS ARE PRODUCED ("HASH"), THE SIGNAL IS EQUALLY STRONG ACROSS THE BROADCAST BAND.

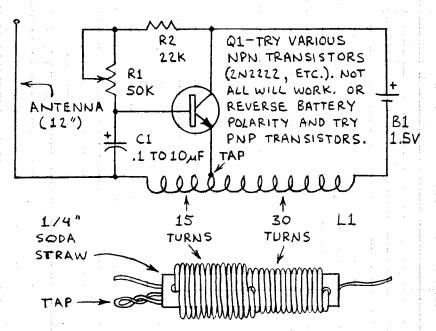
BROADBAND PULSE TRANSMITTER


WHEN SI IS PRESSED A DISTINCT "POP" WILL
BE HEARD FROM A NEARBY RADIO. THIS
CIRCUIT AVOIDS A DIRECT SHORT CIRCUIT ACROSS
THE BATTERY. INSTEAD C1 IS SHORTED BY S1
AFT ER BEING CHARGED THROUGH R1.
40

NARROW BAND RF TRANSMITTER

SIGNAL PEAKS AT 550 KHZ WHEN C1 = 0.005 MF.

TUNABLE RF TRANSMITTER


TUNING WIRE

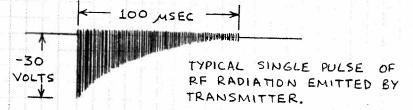
USE FILE TO REMOVE NARROW STRIP OF INSULATION ALONG LENGTH OF L1.
STROKE TUNING WIRE ALONG BARE COIL TURNS WHILE LISTENING TO NEARBY RADIO.

PEAK FREQUENCIES MEASURED WITH ACTUAL CIRCUIT FOR TWO VALUES OF C1.

TRANSISTOR RE TRANSMITTER

A SINGLE TRANSISTOR CAN BE CONNECTED AS AN OSCILLATOR THAT SUPPLIES A SERIES OF RADIO-FREQUENCY PULSES. THE BASIC HARTLEY OSCILLATOR SHOWN HERE WILL SEND RF PULSES TO A SHORTWAVE OR BROADCAST BAND RADIO SEVERAL FEET AWAY.

LI IS A HOMEMADE AIR-CORE RF COIL. USE 30 GAUGE WRAPPING WIRE OR MAGNET WIRE. (USE MAGNET WIRE FOR SMALLER COIL. BURN THE VARNISH FROM ENDS OF LI WITH A MATCH AND LIGHTLY BUFF CHARRED VARNISH WITH SAND PAPER.) BEFORE WINDING, PUNCH SMALL HOLE IN ONE END OF STRAW (RIGHT END OF COIL ABOVE). INSERT 2" OF WIRE THROUGH HOLE AND WIND 30 TURNS. PUNCH SECOND SMALL HOLE (LEFT END OF COIL) AND INSERT 2" LOOP OF WIRE (TAP) THROUGH HOLE. WIND BACK 15 TURNS BACK OVER FIRST WINDING, PUNCH HOLE THROUGH WINDING AND INSERT END OF WIRE. IF WRAPPING WIRE IS USED, CUT TAP LOOP AND TWIST EXPOSED WIRES. 42


C1: USE 0.1 MF TO TRANSMIT AN AUDIO TONE. USE 10 MF TO TRANSMIT A STREAM OF POCKS. USE A MINIATURE ELECTROLYTIC CAPACITOR.

R1: CHANGE R1'S SETTING TO VARY OSCILLATION FREQUENCY.

B1: USE A PENLIGHT CELL OR A MERCURY OR SILVER OXIDE BUTTON CELL. WARNING: NEVER ATTEMPT TO SOLDER LEADS TO MINIATURE POWER CELLS! THEY WILL EXPLODE.

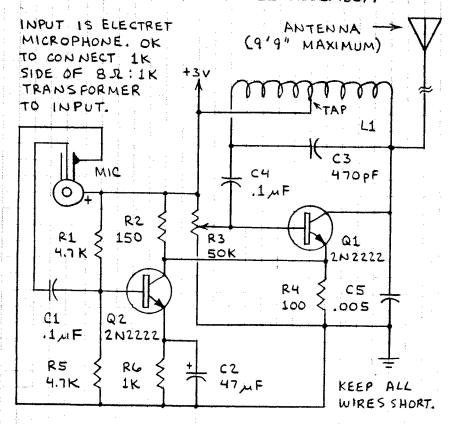
CIRCUIT OPERATION

THIS TRANSMITTER EMITS AN RF SIGNAL THAT CAN BE RECEIVED ACROSS A WIDE PART OF THE BROADCAST AND SHORTWAVE SPECTRUM, PARTICULARLY THE 16-METER BAND AND BEYOND. THE SIGNAL CAN ALSO BE RECEIVED AT THE LOW END OF THE 88- TO 108-MH2 FM BAND.

EACH TRANSMITTED PULSE IS AN ENVELOPE OF BROAD SPECTRUM RF OSCILLATIONS RATHER THAN A PURE, SINGLE FREQUENCY SIGNAL. NOTE THAT THE AUTOTRANSFORMER ACTION OF L1 INCREASES THE OUTPUT FROM 1.5 TO -30 VOLTS.

TO TRANSMIT TEMPERATURE OR LIGHT INTENSITY, REPLACE R1 WITH A THERMISTOR OR CADMIUM SULFIDE PHOTORESISTOR. USE A VALUE FOR C1 THAT GIVES A PULSE RATE OF A FEW PULSES PER SECOND. WITH THE HELP OF A DIGITAL WATCH OR TIMER, YOU CAN THEN COUNT THE NUMBER OF PULSES IN, SAY, 10 SECONDS FOR EACH OF SEVERAL INPUT CONDITIONS.

CODE TRANSMITTER

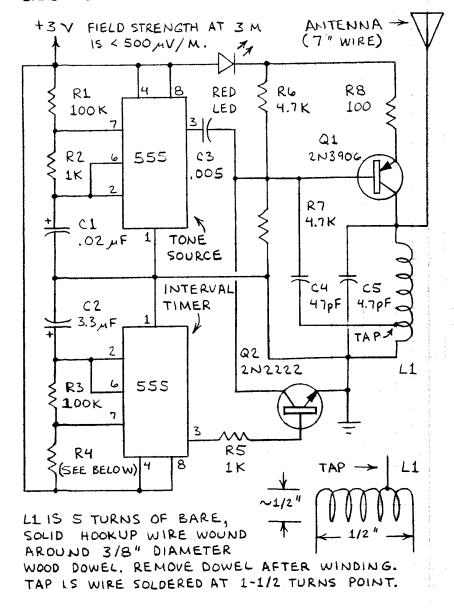

ANTENNA THIS TRANSMITTER WILL (9'9" MAXIMUM) SEND TONE TO NEARBY BROADCAST BAND RADIO L1 IS AIR CORE COIL. TUNED TO NEAR 700 KHZ. USE 8' OF 30 GAUGE TRAMSMITTING RANGE MAGNET WIRE. TAP IS SEVERAL FEET. IS AT CENTER OF COIL. 1/4" SODA STRAW-PRESS SI TO TRAMSMIT TONE. CL TAP L1 .01µF 8 RI 10 OK 470 pF C4 1µF R2. 555 1K R3 91 50K 3 2N2222 R4 C5 1 100 .005

L1: FORM 1-1/2" LOOP AT CENTER OF B'WIRE. WIND WIRE ON STRAW, INSERTING LOOP THROUGH HOLE PUNCHED IN CENTER OF STRAW.

RF OUTPUT IS CLEAN SINE WAVE NEAR 700 KHZ.
ADJUST R3 FOR CLEAR, LOUD TONE. RETUNE
RAD 10 AS NECESSARY. INSERT SMALL STEEL NAIL
INSI DE L1 TO LOWER TRANSMISSION FREQUENCY.
USE DURING DAY FOR MAXIMUM RANGE.
44

VOICE TRANSMITTER

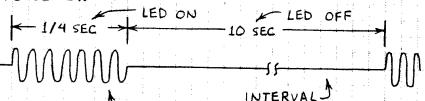
THE RF OSCILLATOR OF THIS TRANSMITTER IS IDENTICAL TO THE ONE ON THE FACING PAGE. REFER THERE FOR L1 ASSEMBLY.



RF OUTPUT IS CLEAN SINE WAVE NEAR 700 KHZ. PLACE MICROPHONE CLOSE TO EARPHONE CONNECTED TO TAPE RECORDER. THEN TUNE NEARBY RADIO TO RECEIVE SIGNAL FROM TRANSMITTER. ADJUST R3 FOR BEST SOUND. RETUNE RADIO AS NECESSARY. REMOVE RECORDER AND SPEAK INTO MICROPHONE.

THE TRANSMITTERS ON THIS AND FACING PAGE CONFORM TO THE REQUIREMENTS OF THE FCC GIVEN IN 47 CFR, PART 15.113 WHEN R3 IS ADJUSTED FOR CLEAREST OUTPUT SIGNAL, BI IS 3 VOLTS AND THE ANTENNA LENGTH < 3 METERS.

AUTOMATIC TONE TRANSMITTER


THIS CIRCUIT TRANSMITS A BRIEF (1/4 SECOND) TONE BURST ONCE EVERY 10 SECONDS TO AN FM. BAND RECEIVER UP TO A FEW HUNDRED FEET AWAY.

R4 IS 3.9M OR 2 2.2M RESISTORS IN SERIES.

CIRCUIT OPERATION

Q1 OSCILLATES AT A FREQUENCY CONTROLLED BY CS AND LI. VALUES SHOWN GIVE FREQUENCY NEAR 100 MHz. USE VARIABLE CAPACITOR FOR CS TO VARY FREQUENCY.

RF SIGNAL (AUDIO FREQUENCY CONTROLLED BY R1/C1)

(DURATIONS OF RESIGNAL AND INTERVAL CONTROLLED BY R4/R3/C2)

TO ADJUST, DISCONNECT Q2'S COLLECTOR FROM C3. TUNE FM RADIO UNTIL STEADY TONE IS RECEIVED. RECONNECT Q2. DO NOT OPERATE CIRCUIT IN CONTINUOUS TONE MODE UNLESS ADJUSTMENTS ARE BEING MADE. (SEE FCC RULES BELOW AND ON FOLLOWING PAGE.) INSTALL CIRCUIT IN ALUMINUM BOX. MOUNT L1 SECURELY TO CIRCUIT BOARD. IF L1 MOVES OR VIBRATES, THE FREQUENCY WILL SHIFT. BOTH 555 CHIPS CAN BE CMOS/LOW-POWER TYPES, BUT NOT ALL CMOS 555'S WILL WORK IN CIRCUIT. USE CIRCUIT FOR PAGING, REMOTE CONTROL, TRACKING, ANNOUNCING VISITORS, ETC. TO TRANSMIT LIGHT LEVEL OR TEMPERATURE AS A VARIABLE TONE, REPLACE R1 WITH PHOTORESISTOR OR THERMISTOR.

SPECIAL FCC RULE

THE FCC REQUIRES THAT "... THE DURATION OF EACH TRANSMISSION SHALL NOT BE GREATER THAN ONE SECOND AND THE SILENT PERIOD BETWEEN TRANSMISSIONS SHALL BE AT LEAST 30 TIMES THE TRANSMISSION DURATION BUT IN NO CASE LESS THAN 10 SECONDS." (47 CFR 15.122) WITH THE VALUES FOR R3, R4 AND C2 GIVEN HERE, THIS CIRCUIT FULFILLS THIS RULE. SEE NEXT PAGE FOR ADDITIONAL RULES.

FCC REGULATIONS

FCC RULES YOU SHOULD KNOW ABOUT INCLUDE:

- 1 EAVESDROPPING IS PROHIBITED.
- 2. A LOW-POWER TRANSMITTER THAT INTERFERES.
 WITH RADIO OR TELEVISION RECEPTION MUST NOT BE OPERATED.
- 3. REQUIRED HOME-BUILT TRANSMITTER LABEL:

I HAVE CONSTRUCTED THIS DEVICE FOR MY
OWN USE. I HAVE TESTED IT AND CERTIFY
THAT IT COMPLIES WITH THE APPLICABLE
REGULATIONS OF FCC RULES PART 15.
A COPY OF MY MEASUREMENTS IS IN MY
POSSESSION AND IS AVAILABLE FOR .
INSPECTION.
SIGNED: DATE:

ADDITIONAL RULES GIVE PERMISSIBLE SIGNAL STRENGTHS AND OTHER RESTRICTIONS. SEE 47 CFR, PART 15 FOR DETAILS (WRITE TO THE SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE, WASHINGTON, DC 20402).

GOING FURTHER

RADIO SHACK SELLS EASILY ASSEMBLED TRANSMITTER AND RECEIVER KITS. RADIO SHACK ALSO SELLS A WIDE RANGE OF CB EQUIPMENT. BOOKS ABOUT RADIO COMMUNICATIONS CAN BE FOUND AT MOST LIBRARIES. POPULAR COMMUNICATIONS, 73, QST AND CQ ARE SOME OF THE MAGAZINES DEVOTED TO THE SUBJECT.

PROBABLY THE BEST GUIDE TO AMATEUR RADIO IS "THE ARRL HANDBOOK FOR THE RADIO AMATEUR."
THIS ALL-INCLUSIVE BOOK, WHICH IS REVISED EACH YEAR, IS AVAILABLE FROM THE AMERICAN RADIO RELAY LEAGUE (NEWINGTON, CT. 06111).
48

RESISTOR COLOR CODE

BLACK 0 × 1 1 1 × 10 2 2 × 100 3 3 × 1,000 4 4 × 10,000 5 5 × 100,000 6 6 × 1,000,000 7 7 × 10,000,000 8 8 × 100,000,000 9 9 BROWN RED ORANGE YELLOW GREEN BLUE VIOLET GRAY 9 WHITE

FOURTH BAND INDICATES TOLERANCE (ACCURACY): GOLD= ±5% SILVER= ±10% NONE = ±20%

OHM'S LAW: V=IR R=V/I I=V/R P=VI=I2R

ABBREVIATIONS

A = AMPERE R * RESISTANCE F = FARAD V (OR E) = VOLT I = CURRENT W= WATT P = POWER IL = OHM M (MEG-) = x 1,000,000 K (KILO-) = x 1,000 m (MILLI-) = ,001

M (MICRO-) = .000 001 n (NANO-) = .000 000 001

P (PICO-) = .000 000 000 001

Radio Jnack

A Division of Tandy Corporation Fort Worth, Texas 76102

PRIVICO N'OLLA

