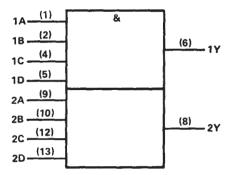
SDLS139 - APRIL 1985 - REVISED MARCH 1988

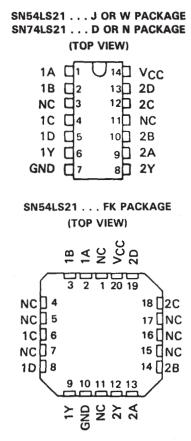
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

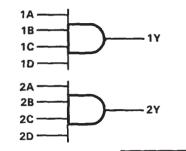

These devices contain two independent 4-input AND gates.

The SN54LS21 is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74LS21 is characterized for operation from 0 °C to 70 °C.

FUNCTION	TABLE	(each	gate)
----------	-------	-------	-------


	INP	UTS	OUTPUT	
A	в	С	D	Y
н	н	н	н	н
L	х	х	x	L
X	L	х	X	L
X	х	L	x	L
X	х	х	L	L

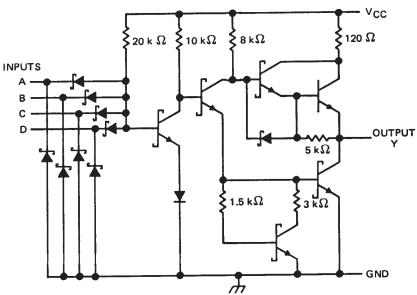
logic symbol[†]


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

NC-No internal connection

logic diagram


(positive logic) Y = A•B•C•D or Y = $\overline{\overline{A} + \overline{B} + \overline{C} + \overline{D}}$

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN54LS21, SN74LS21 DUAL 4-INPUT POSITIVE-AND GATES

SDLS139 - APRIL 1985 - REVISED MARCH 1988

schematics (each gate)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Operating free-air temperature range: SN54'	-55°C to 125°C
SN74' Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminals.

SN54LS21, SN74LS21 DUAL 4-INPUT POSITIVE-AND GATES

SDLS139 - APRIL 1985 - REVISED MARCH 1988

recommended operating conditions

		SN54LS21			SN74LS21		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	v
VIH High-level input voltage	2			2			V
VIL Low-level input voltage			0.7			0.8	V
OH High-level output current			- 0.4			- 0.4	mA
IOL Low-level output current			4			8	mA
T _A Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS T			SN54LS21			SN74LS21			
			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
VIK	V _{CC} = MIN,	l _l = – 18 mA				- 1.5			1.5	V
VOH	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OH} ≂ – 0.4 mA	2.5	3.4		2.7	3.4		v
	V _{CC} = MIN,	VIL = MAX,	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	v
VOL	V _{CC} = MIN,	VIL = MAX,	I _{OL} = 8 mA					0.35	0.5	
1	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
Чн	V _{CC} = MAX,	V _I = 2.7 V				20			20	μA
	V _{CC} = MAX,	V _I = 0.4 V				- 0.4			- 0.4	mA
los§	V _{CC} = MAX			- 20		- 100	- 20		- 100	mA
Іссн	V _{CC} = MAX,	V ₁ = 4.5 V			1.2	2.4		1.2	2.4	mA
ICCL	V _{CC} = MAX,	V _I = 0 V			2.2	4.4		2.2	4.4	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25^oC § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS			TYP	MAX	UNIT
^t PLH		×	R L = 2 kΩ,	C _L = 15 pF		8	15	ns
tPHL	Алу	Ť				10	20	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated